755 research outputs found

    Future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0_0

    Full text link
    Using the methods developed for the Bianchi I case we have shown that a boostrap argument is also suitable to treat the future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0_0. These solutions are asymptotic to the Collins-Stewart solution with dust and the Ellis-MacCallum solution respectively. We have thus generalized the results obtained by Rendall and Uggla in the case of locally rotationally symmetric Bianchi II spacetimes to the reflection symmetric case. However we needed to assume small data. For Bianchi VI0_0 there is no analogous previous result.Comment: 30 page

    A global foliation of Einstein-Euler spacetimes with Gowdy-symmetry on T3

    Full text link
    We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on T3, and we construct matter spacetimes with low regularity. These spacetimes admit, both, impulsive gravitational waves in the metric (for instance, Dirac mass curvature singularities propagating at light speed) and shock waves in the fluid (i.e., discontinuities propagating at about the sound speed). Given an initial data set, we establish the existence of a future development and we provide a global foliation in terms of a globally and geometrically defined time-function, closely related to the area of the orbits of the symmetry group. The main difficulty lies in the low regularity assumed on the initial data set which requires a distributional formulation of the Einstein-Euler equations.Comment: 24 page

    Fuchsian methods and spacetime singularities

    Full text link
    Fuchsian methods and their applications to the study of the structure of spacetime singularities are surveyed. The existence question for spacetimes with compact Cauchy horizons is discussed. After some basic facts concerning Fuchsian equations have been recalled, various ways in which these equations have been applied in general relativity are described. Possible future applications are indicated

    Late-time oscillatory behaviour for self-gravitating scalar fields

    Full text link
    This paper investigates the late-time behaviour of certain cosmological models where oscillations play an essential role. Rigorous results are proved on the asymptotics of homogeneous and isotropic spacetimes with a linear massive scalar field as source. Various generalizations are obtained for nonlinear massive scalar fields, kk-essence models and f(R)f(R) gravity. The effect of adding ordinary matter is discussed as is the case of nonlinear scalar fields whose potential has a degenerate zero.Comment: 17 pages, additional reference

    Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric

    Get PDF
    The dynamics of a class of cosmological models with collisionless matter and four Killing vectors is studied in detail and compared with that of corresponding perfect fluid models. In many cases it is possible to identify asymptotic states of the spacetimes near the singularity or in a phase of unlimited expansion. Bianchi type II models show oscillatory behaviour near the initial singularity which is, however, simpler than that of the mixmaster model.Comment: 27 pages, 3 figures, LaTe

    Intermediate inflation and the slow-roll approximation

    Full text link
    It is shown that spatially homogeneous solutions of the Einstein equations coupled to a nonlinear scalar field and other matter exhibit accelerated expansion at late times for a wide variety of potentials VV. These potentials are strictly positive but tend to zero at infinity. They satisfy restrictions on V′/VV'/V and V′′/V′V''/V' related to the slow-roll approximation. These results generalize Wald's theorem for spacetimes with positive cosmological constant to those with accelerated expansion driven by potentials belonging to a large class.Comment: 19 pages, results unchanged, additional backgroun

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    Algebraic expansions for curvature coupled scalar field models

    Full text link
    A late time asymptotic perturbative analysis of curvature coupled complex scalar field models with accelerated cosmological expansion is carried out on the level of formal power series expansions. For this, algebraic analogues of the Einstein scalar field equations in Gaussian coordinates for space-time dimensions greater than two are postulated and formal solutions are constructed inductively and shown to be unique. The results obtained this way are found to be consistent with already known facts on the asymptotics of such models. In addition, the algebraic expansions are used to provide a prospect of the large time behaviour that might be expected of the considered models.Comment: 16 pages, no figures; v2: typos corrected, references adde

    Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes

    Get PDF
    Numerical investigation of a class of inhomogeneous cosmological spacetimes shows evidence that at a generic point in space the evolution toward the initial singularity is asymptotically that of a spatially homogeneous spacetime with Mixmaster behavior. This supports a long-standing conjecture due to Belinskii et al. on the nature of the generic singularity in Einstein's equations.Comment: 4 pages plus 4 figures. A sentence has been deleted. Accepted for publication in PR

    Cosmological spacetimes not covered by a constant mean curvature slicing

    Get PDF
    We show that there exist maximal globally hyperbolic solutions of the Einstein-dust equations which admit a constant mean curvature Cauchy surface, but are not covered by a constant mean curvature foliation.Comment: 11 page
    • …
    corecore